Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk
نویسندگان
چکیده
The adsorption characteristics and mechanisms of Ni2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni2+ removal percentage but a decrease of the adsorbed amount of Ni2+ per weight unit of biochar. The Ni2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.
منابع مشابه
The relationship between the characteristics of Biochar produced at different temperatures and its impact on the uptake of NO3--N
Background: Nitrogen leaching from agricultural lands is a major threat to groundwater and surface waters. This study investigated the relationship between the characteristics of wheat-straw biochar produced at different temperatures and its impact on the uptake of NO3--N. Methods: Three types of biochar were produced from wheat straw at three different pyrolysis temperatures of 300, 400 and 5...
متن کاملEffect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil
The effect of biochar amendment of a multi-element contaminated soil on the transfer and accumulation of Cd, Zn, Pb, and As in wheat was investigated in this study. Addition of biochars from rice residues (straw, husk, and bran) significantly decreased shoot Cd, Zn, and Pb concentrations by up to 71%, 37%, and 60%, respectively, but increased As by up to 199%. Biochar additions decreased the NH...
متن کاملPhysical and chemical characterization of biochars derived from different agricultural residues
Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice hus...
متن کاملAdsorption of Cr(III) from acidic solutions by crop straw derived biochars.
Cr(III) adsorption by biochars generated from peanut, soybean, canola and rice straws is investigated with batch methods. Adsorption of Cr(III) increased as pH rose from 2.5 to 5.0. Adsorption of Cr(III) led to peak position shifts in the FTIR-PAS spectra of the biochars and made zeta potential values less negative, suggesting the formation of surface complexes between Cr3+ and functional group...
متن کاملNovel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars
Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 an...
متن کامل